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Abstract—As part of the Moonshot Goal 3 project, we aim to
develop Al-powered partner robots for domestic environments. In
this paper, we present the future of AI-driven robots that operate
physical nursing care. We experimented with Al-driven arm-
motion generation for physical training, transfer assistance, and
dress assistance. Looking ahead, we plan the further development
of a deep-learning model capable of more various nursing care
tasks with whole-body manipulation in more complex situations.

Index Terms—Physical nursing care, Versatile robot, Imitation
learning.

I. INTRODUCTION

A multifunctional robot designed for domestic environments
is gaining significant attention. Unlike industrial robots work-
ing in manufacturing, domestic robots must coexist with hu-
mans, prioritizing safety, human interaction, and autonomous
handling of various objects. Research has explored integrating
multimodal components to enhance human-robot collaboration
in home settings. In particular, nursing care is important in
aging societies.

Further advancements and continuous integration of embod-
ied intelligence remain necessary. As part of the Moonshot
Goal 3 project [1], our objective is to develop Al-powered
partner robots that embody human sensibilities and ethical
considerations, contributing to enriched lifestyles. In this pa-
per, we present the future of Al-driven domestic robots by
summarizing our previous works and the current progress of
autonomous assistance for care patients by a humanoid.

II. PREVIOUS STUDIES

Some robotic arms are specifically designed to apply inter-
action forces to a target, particularly for caregiving tasks. A
rule-based assistive system working alongside caregivers has
been shown to reduce their workload in repositioning tasks
[2], [3]. RIBA, a robot equipped with human-like arms for
physically demanding tasks, successfully lifted a person from a
bed and transferred them to a wheelchair [4]. Similarly, RoNa
demonstrated the capability to lift a 227 kg patient [5].

To enhance human comfort, studies have evaluated interface
pressure and patient positioning during lifting to determine
optimal interaction points and applied forces [6], [7]. How-
ever, these conventional systems still lack autonomous motion
planning capabilities. As a result, caregivers must manually
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adjust the robots’ movement positions, directions, and speeds
according to each situation.

Autonomous manipulation plays an essential role in exe-
cuting daily caregiving tasks. A skeleton recognition system
has been developed to autonomously plan to reach trajectories
for touching a shoulder [8]. Dressing assistive robots [9]-
[13] have successfully performed autonomous arm trajectory
control around the human body. Moreover, integrating these
systems with language models could enable communication-
based behavior adjustments [11], [14]. Although dressing-
assistance robots have addressed occlusion and variability
challenges using multimodal information and DNN models,
they primarily interact with clothing. These previous works did
not engage in direct physical contact with the care recipient.

III. SYSTEM

Dry-AIREC (Al-driven Robot for Embrace and Care) is a
versatile robot designed to learn and execute a wide range of
complex, high-difficulty tasks. Its objectives include customer
assistance, household chores such as cooking, laundry, and
cleaning, long-term care tasks like patient transfer, bathing,
and feeding, as well as medical support. We applied the
Dry-AIREC system for the feasibility exploration of physical
nursing caring.

The Dry-AIREC can modify the impedance parameters
of its arm and waist joints during movement. The control
modes—position, force, and impedance control—can be flex-
ibly adjusted based on working conditions and task require-
ments. Activating compliance control mode enables the robot
arm to effectively handle local disturbances, perform intricate
manipulations, and interact safely with humans. The head joint
is controlled using position-based control, while the mobil-
ity base operates with velocity-based control. Additionally,
integrating text-to-speech, speech-to-text, and large language
models enables the Dry-AIREC to communicate with humans
effectively.

We experimented with Al-based arm-motion generation for
physical training, transferring, and dressing assistance. The Al
algorithms we relied on are the large language model (GPT-
3.5, OpenAl) or deep predictive learning model “EIPL” [15]
which adopts a motion learning approach to minimize real-
world prediction errors. In repositioning and dressing tasks, we
applied the proprioceptive attention mechanism based on EIPL
[16]. To train the policy of the caring motion, direct teaching



Fig. 2. A scene of the robot conducting the repositioning caring

was performed by manually guiding Dry-AIREC’s arm with
approximately 10 times for 10 minutes in each motion.

IV. RESULTS AND DISCUSSION

First, the Dry-AIREC conducted a range-of-motion training
for an arm of humans. Fig. 1 shows a scene of performing the
range-of-motion training [14]. The Dry-AIREC can recognize
the human body segment from a proximity distance, touch
both a shoulder and a hand, and move a whole arm. The
large language model facilitates parameter adjustment of arm
velocity and touch strength corresponding to human requests.

Next, the Dry-AIREC conducted the transfer assistance.
In particular, the repositioning tasks are challenging because
the touching point is occluded, and high-precise touching is
required. Fig. 2 shows a scene of repositioning caring based
on deep predictive learning. Both reaching to the back of
a mannequin without unnecessary contact to an unexpected
point and assisting the sitting motion with a force application
to the back were successfully performed [16].
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Fig. 3. A scene of the robot conducting the dress assisting caring

Dressing assistance was conducted by Dry-AIREC with
the same deep-learning framework. Fig. 3 shows a scene of
socks-dressing assistance. The Dry-AIREC can successfully
manipulate the deformable socks object and apply the needed
force to a foot for dressing without excessive force application.

The Dry-AIREC was able to perform multiple caring tasks.
In future work, we plan the further development of a deep-
learning model capable of more various nursing care tasks
Specifically, we would integrate a semantic recognition model,
a large language model, and a deep predictive model for
motion generation, with the mobile base, waist, and arm joints.
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